
The Simplest Device Drivers

3.1 How to compile and link the kernel-mode device driver
3.2 The simplest possible kernel-mode device driver

3.2.1 Simplest driver source code
3.2.2 DriverEntry Routine

3.3 Beeper device driver
3.3.1 Beeper driver source code
3.3.2 Controlling the system timer
3.3.3 Starting the driver automatically

3.4 Service Control Program for giveio driver
3.4.1 Giveio driver's SCP source code
3.4.2 Using the registry for passing some info to the driver
3.4.3 Accessing the CMOS

3.5 Giveio device driver
3.5.1 Giveio driver source code
3.5.2 I/O permission bit map
3.5.3 Reading info from the registry
3.5.4 Give user-mode process access to the I/O ports

3.6 A couple of words about driver debugging

 Source code: KmdKit\examples\simple\Beeper

 Source code: KmdKit\examples\simple\DateTime

3.1 How to compile and link the kernel-mode device driver

I always place driver's source code into a batch file. Such file is a mixture of *.bat and *.asm files, but has "bat" extension.

;@echo off
;goto make

.386 ; driver's code start

 ;::::::::::::::::::::::::::::::::
 ; the rest of the driver's code ;
 ;::::::::::::::::::::::::::::::::

end DriverEntry ; driver's code end

:make

set drv=drvname

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

If you run such "self-compiling" file the following will occur. First two commands are commented out, thus they ignored by
masm compiler, but accepted by command processor, that in turn ignores semicolon symbol. The control jumps to :make label
where some options for the compiler and linker are specified. All instructions following the end directive is ignored by the
compiler. Thus all lines between goto make command and :make label are ignored by the command processor but accepted by
the compiler. And all that is outside (including goto make command and :make label) is ignored by the compiler but accepted
by the command processor. This method is extremely convenient, since the source code itself keeps all the info about how it
should be compiled and linked. Also you can simply add some extra processing if you need. I use this method for all my
drivers. Since the control programs usually don't require anything special you can compile it as you like.

set drv=drvname

We define an environment variable, which will be the substitution for the driver's file name.

The used linker options means:

Command Key Description

/driver - tells the linker it should create a Windows NT kernel-mode driver;

The most important effect of this option is the addition of a new section called "INIT". Here goes the part
of ".idata" section, which contains a list of IMAGE_IMPORT_DESCRIPTOR structures and the names of
imported functions and modules. This "INIT" section is marked as discardable in order to NT image
loader discard it after locating the imported function addresses.

/base:0x10000 - sets the driver base address equal to 10000h. We have already discussed about it in the preceding part;

/align:32 - the system memory is a precious resource. Therefore, the device driver's files have more "fine" section
alignment;

/out:%dvr%.sys - the linker creates *.exe files by default. Or builds a *.dll if the /DLL option is specified. We should force
the linker to create *.sys file.

/subsystem:native - In the PE header of every executable file there is a field that tells the image loader which subsystem
this module requires: Win32, POSIX or OS/2. It's necessary to place a driver's image into the
appropriate environment. When we compile *.exe or *.dll file, we usually indicate under this option that
the executable file requires a Win32 subsystem. The kernel-mode drivers don't require any subsystem at
all, since they run in the native environment.

3.2 The simplest possible kernel-mode device driver

3.2.1 Simplest driver source code

Here is the source code of the simplest possible kernel-mode device driver.

;@echo off
;goto make

;:::
;
; simplest - Simplest possible kernel-mode driver
;
;:::

.386

.model flat, stdcall
option casemap:none

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc

;:::
; C O D E
;:::

.code

;:::
; DriverEntry
;:::

DriverEntry proc pDriverObject:PDRIVER_OBJECT, pusRegistryPath:PUNICODE_STRING

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

DriverEntry endp

;:::
;
;:::

end DriverEntry

;:::
; B U I L D I N G D R I V E R

;:::

:make

set drv=simplest

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

3.2.2 DriverEntry Routine

Like any other executable module each driver must have the entry point, which is called when the driver is loaded into the
memory. The driver's entry point is the DriverEntry routine. This name is conventionally given to the main entry point of a
kernel-mode device driver. You may rename it anything you like. The DriverEntry routine initializes driver-wide data structures.
The prototype for DriverEntry routine is defined as follows:

DriverEntry proto DriverObject:PDRIVER_OBJECT, RegistryPath:PUNICODE_STRING

Unfortunately well-known "hungarian notation" by Charles Simonyi is not used in DDK. I will use it everywhere if possible.
Therefore, I have added the prefixes to the DriverObject and the RegistryPath.

The data types of PDRIVER_OBJECT and PUNICODE_STRING are defined in \include\w2k\ntddk.inc and \include\w2k\ntdef.inc
respectively.

PDRIVER_OBJECT typedef PTR DRIVER_OBJECT
PUNICODE_STRING typedef PTR UNICODE_STRING

When the I/O Manager calls the DriverEntry routine it passes two pointers to it:

Parameter Description

pDriverObject - a pointer to a barely initialized driver object that represents the driver.

Windows NT is an object-oriented operating system. So, the drivers are represented as objects. By the
loading of the driver into the memory the system creates driver object which represents the given driver.
The driver object is nothing more then DRIVER_OBJECT structure (defined in \include\w2k\ntddk.inc). The
pDriverObject pointer gives the driver an access to that structure. But we don't need to touch it this time.

pusRegistryPath - a pointer to a counted Unicode string that specifies a path to the driver's registry subkey. We have
discussed about the driver's registry subkey in the previous part.

The driver can use this pointer to store or retrieve some driver-specific information. If a driver will need to
use the path after its DriverEntry routine has completed, the driver should save a copy of the unicode string,
not the pointer itself since it has no meaning outside the DriverEntry routine.

Counted Unicode String is also the structure of type UNICODE_STRING. Unlike the user-mode code, the kernel-mode code
operates with the strings in UNICODE_STRING format. It's defined in \include\w2k\ntdef.inc like this:

UNICODE_STRING STRUCT
 _Length WORD ?
 MaximumLength WORD ?
 Buffer PWSTR ?
UNICODE_STRING ENDS

Parameter Description

_Length - The length of the string in bytes (not characters), not counting the terminating null character (I had to
change an original Length name, since it is a masm reserved word);

MaximumLength - The length in bytes (not characters) of the buffer pointed by Buffer member;

Buffer - Pointer to the Unicode-string itself. Don't expect it as always zero-terminated. It does not sometimes!

The main advantage of this format is its clear determination of both the current string length, and its maximum possible length.
It allows avoid some additional calculations.

The above-described driver (\src\Article2-3\simplest\simplest.sys) is the simplest one. The only thing it does allows to load
itself. Since it can't do anything more it returns an error code STATUS_DEVICE_CONFIGURATION_ERROR (see \include\w2k
\ntstatus.inc for complete list of possible error codes). If you return STATUS_SUCCESS the driver will remain in the memory,

and you can't unload it, since we have not defined the DriverUnload routine responsible for this.

You can register and load any driver with the KmdManager utility.

3.3 Beeper device driver

3.3.1 Beeper driver source code

Now let's examine the beeper driver. Last time we have written its control program.

;@echo off
;goto make

;:::
;
; beeper - Kernel Mode Drive
; Makes beep thorough computer speaker
;
;:::

.386

.model flat, stdcall
option casemap:none

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\hal.inc

includelib \masm32\lib\w2k\hal.lib

;:::
; E Q U A T E S
;:::

TIMER_FREQUENCY equ 1193167 ; 1,193,167 Hz
OCTAVE equ 2 ; octave multiplier

PITCH_C equ 523 ; C - 523,25 Hz
PITCH_Cs equ 554 ; C# - 554,37 Hz
PITCH_D equ 587 ; D - 587,33 Hz
PITCH_Ds equ 622 ; D# - 622,25 Hz
PITCH_E equ 659 ; E - 659,25 Hz
PITCH_F equ 698 ; F - 698,46 Hz
PITCH_Fs equ 740 ; F# - 739,99 Hz
PITCH_G equ 784 ; G - 783,99 Hz
PITCH_Gs equ 831 ; G# - 830,61 Hz
PITCH_A equ 880 ; A - 880,00 Hz
PITCH_As equ 988 ; B - 987,77 Hz
PITCH_H equ 1047 ; H - 1046,50 Hz

; We are going to play c-major chord

TONE_1 equ TIMER_FREQUENCY/(PITCH_C*OCTAVE)
TONE_2 equ TIMER_FREQUENCY/(PITCH_E*OCTAVE)
TONE_3 equ (PITCH_G*OCTAVE) ; for HalMakeBeep

DELAY equ 1800000h ; for my ~800mHz box

;:::
; M A C R O S
;:::

DO_DELAY MACRO
 mov eax, DELAY
 .while eax
 dec eax
 .endw
ENDM

;:::
; C O D E
;:::

.code

;:::

; MakeBeep1
;:::

MakeBeep1 proc dwPitch:DWORD

 ; Direct hardware access

 cli

 mov al, 10110110y
 out 43h, al

 mov eax, dwPitch
 out 42h, al

 mov al, ah
 out 42h, al

 ; Turn speaker ON

 in al, 61h
 or al, 11y
 out 61h, al

 sti

 DO_DELAY

 cli

 ; Turn speaker OFF

 in al, 61h
 and al, 11111100y
 out 61h, al

 sti

 ret

MakeBeep1 endp

;:::
; MakeBeep2
;:::

MakeBeep2 proc dwPitch:DWORD

 ; Hardware access using WRITE_PORT_UCHAR and READ_PORT_UCHAR
 ; functions from hal.dll

 cli

 invoke WRITE_PORT_UCHAR, 43h, 10110110y

 mov eax, dwPitch
 invoke WRITE_PORT_UCHAR, 42h, al
 mov eax, dwPitch
 invoke WRITE_PORT_UCHAR, 42h, ah

 ; Turn speaker ON

 invoke READ_PORT_UCHAR, 61h
 or al, 11y
 invoke WRITE_PORT_UCHAR, 61h, al

 sti

 DO_DELAY

 cli

 ; Turn speaker OFF

 invoke READ_PORT_UCHAR, 61h
 and al, 11111100y
 invoke WRITE_PORT_UCHAR, 61h, al

 sti

 ret

MakeBeep2 endp

;:::
; DriverEntry

;:::

DriverEntry proc pDriverObject:PDRIVER_OBJECT, pusRegistryPath:PUNICODE_STRING

 invoke MakeBeep1, TONE_1
 invoke MakeBeep2, TONE_2

 ; Hardware access using hal.dll HalMakeBeep function

 invoke HalMakeBeep, TONE_3
 DO_DELAY
 invoke HalMakeBeep, 0

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

DriverEntry endp

;:::
;
;:::

end DriverEntry

;:::
;
;:::

:make

set drv=beeper

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

This driver is intended to beep c-major arpeggio using the motherboard speaker. For this purpose the driver uses IN and OUT
CPU instructions, accessing the appropriate I/O ports. It is well-known that the access to the I/O ports is guarded by Windows
NT as an important system resource. An attempt to execute IN or OUT instruction from user-mode results in termination of the
process. But actually there is a way to bypass this limitation, i.e. to allow the user-mode to access the I/O ports directly. We'll
talk about it a bit later.

3.3.2 Controlling the system timer

There are three timers inside the computer. These are known as timers 0, 1 and 2 and they reside in the Programmable
Interval Timer (PIT). Timer 2 is used to control sound generation. The frequency at which timer oscillates is determined by an
initial count value. The timer counts down from this value to zero, and when it reaches zero, the timer oscillates. The counter is
then re-set to the predetermined initial count value and the process starts again. The counting down process is controlled by
the main system oscillator, which runs at a frequency of 1,193,180 Hz. This value is fixed across the entire range of PC
families. Every time it oscillates, the system timer counts down once. To vary the frequency at which the timer oscillates, we
just need to give it a new initial count value. To calculate the frequency at which the speaker will sound we have to use this
formula: 1193180/. You can find more detailed information searching the Web.

There is one subtlety here, which I misunderstand a bit. The QueryPerformanceFrequency from kernel32.dll really returns the
value of 1193180. But in hal.dll's HalMakeBeep function I have found a little bit different value equal to 1193167. I'll use this
value. Probably it's some time compensation. I don't know. Anyway it doesn't prevent us from beeping the speaker.

We play the first sound (do) of the c-major chord using MakeBeep1 routine.

 mov al, 10110110y
 out 43h, al

First we have to set the timer's control register. We should load a binary value 10110110 into port 43h to achieve this goal.

 mov eax, dwPitch
 out 42h, al

 mov al, ah
 out 42h, al

Then, in two consecutive statements, we load the low byte and high byte of the new initial count value into port 42h.

 in al, 61h
 or al, 11y
 out 61h, al

Now we turn the speaker on by setting bits 0 and 1 of the value on port 61h. Now the speaker is producing the sound.

DO_DELAY MACRO
 mov eax, DELAY
 .while eax
 dec eax
 .endw
ENDM

We let the speaker sound for some time, using DO_DELAY macro. Yes - it is primitive, but is rather effective.

 in al, 61h
 and al, 11111100y
 out 61h, al

To turn the speaker off we need to clear bits 1 and 2 of the value on port 61h. Don't forget that the timer is a global system
resource. Therefore we disable the maskable hardware interrupts by clearing the interrupt flag. It will be much more difficult on
the multi-processor machine.

We play the second (mi) sound of the c-major chord using MakeBeep2 routine. It differs only by using WRITE_PORT_UCHAR
and READ_PORT_UCHAR functions from hal.dll instead of in/out. HAL hides hardware-dependent details such as I/O interfaces
(as in our case) and other, making it machine-independent.

The third (sol) sound of the c-major chord we play with the HalMakeBeep from hal.dll. As a parameter it is necessary not to use
the initial count value, but the frequency value itself instead.

In the beginning of the beeper.bat file you will find all twelve key notes. I used only three of them. Others are left for your
future synthesizer ;-). To turn the speaker off it is necessary to call alMakeBeep once again, passing 0 as an argument.

The beeper driver returns an error code to the system and is removed from the memory. I repeat. It is necessary to return an
error code only to cause the system removes the driver from the memory. When we'll reach full-function drivers, we'll have to
return STATUS_SUCCESS.

3.3.3 Starting the driver automatically

The scp.exe installs driver beeper.sys to be started on demand. Last time we have discussed different start types of the drivers.
Now we try to force the system to start our driver automatically. It can be done in many ways. The simplest one is to comment
the call to DeleteService out, change SERVICE_DEMAND_START to SERVICE_AUTO_START and SERVICE_ERROR_IGNORE to
SERVICE_ERROR_NORMAL, then recompile scp.asm and execute it. After scp.exe exits the registry will contain the brand new
service entry. Now you can completely forget about it. During the next system boot the driver beeper.sys will remind you about
itself. In the Event Log you will find the entry about driver's startup failure. Select from the Start menu Programs/
Administrative Tools/Event Viewer, select System Log, and double-click on an Event Log entry to see it. You will see something
like this:

Figure 3-1. Failure Event Log entry

Don't forget to remove the registry entry otherwise you will hear that nice melody every time your system boots up.

3.4 Service Control Program for giveio driver

3.4.1 Giveio driver's SCP source code

Now let's take a look at another SCP to control giveio.sys driver.

;:::
;
; DateTime - Service Control Program for giveio driver
;
;:::

.386

.model flat, stdcall
option casemap:none

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\windows.inc

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\advapi32.inc

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\advapi32.lib

include \masm32\Macros\Strings.mac

;:::
; M A C R O S
;:::

CMOS MACRO by:REQ
 mov al, by
 out 70h, al
 in al, 71h

 mov ah, al
 shr al, 4
 add al, '0'

 and ah, 0Fh
 add ah, '0'
 stosw
ENDM

;:::
; C O D E
;:::

.code

;:::
; DateTime
;:::

DateTime proc uses edi

local acDate[16]:CHAR
local acTime[16]:CHAR
local acOut[64]:CHAR

 ; See Ralf Brown's Interrupt List for details

 ;:::::::::::::::::: Set data format ::::::::::::::::::

 mov al, 0Bh ; status register B
 out 70h, al
 in al, 71h

 push eax ; save old data format
 and al, 11111011y ; Bit 2: Data Mode - 0: BCD, 1: Binary
 or al, 010y ; Bit 1: 24/12 hour selection - 1 enables 24 hour mode
 out 71h, al

 ;:::::::::::::::::::: Lets' fetch current date ::::::::::::::::::::

 lea edi, acDate

 CMOS 07h ; date of month
 mov al, '.'
 stosb

 CMOS 08h ; month
 mov al, '.'
 stosb

 CMOS 32h ; two most significant digit od year
 CMOS 09h ; two least significant digit od year

 xor eax, eax ; terminate string with zero
 stosb

 ;:::::::::::::::::::: Lets' fetch current time :::::::::::::::::::

 lea edi, acTime

 CMOS 04h ; hours
 mov al, ':'
 stosb

 CMOS 02h ; minutes
 mov al, ':'
 stosb

 CMOS 0h ; seconds

 xor eax, eax ; terminate string with zero
 stosb

 ;:::::::::::::: restore old data format :::::::::::::

 mov al, 0Bh
 out 70h, al
 pop eax
 out 71h, al

 ;::::::::::::::::: Show current date and time :::::::::::::::

 invoke wsprintf, addr acOut, $CTA0("Date:\t%s\nTime:\t%s"), addr acDate, addr acTime
 invoke MessageBox, NULL, addr acOut, $CTA0("Current Date and Time"), MB_OK

 ret

DateTime endp

;:::
; start
;:::

start proc

local fOK:BOOL
local hSCManager:HANDLE
local hService:HANDLE
local acDriverPath[MAX_PATH]:CHAR

local hKey:HANDLE
local dwProcessId:DWORD

 and fOK, 0 ; assume an error

 ; Open the SCM database

 invoke OpenSCManager, NULL, NULL, SC_MANAGER_CREATE_SERVICE
 .if eax != NULL
 mov hSCManager, eax

 push eax
 invoke GetFullPathName, $CTA0("giveio.sys"), sizeof acDriverPath, addr acDriverPath, esp
 pop eax

 ; Register driver in SCM active database

 invoke CreateService, hSCManager, $CTA0("giveio"), $CTA0("Current Date and Time fetcher."), \
 SERVICE_START + DELETE, SERVICE_KERNEL_DRIVER, SERVICE_DEMAND_START, \
 SERVICE_ERROR_IGNORE, addr acDriverPath, NULL, NULL, NULL, NULL, NULL

 .if eax != NULL
 mov hService, eax

 invoke RegOpenKeyEx, HKEY_LOCAL_MACHINE, \
 $CTA0("SYSTEM\\CurrentControlSet\\Services\\giveio"), \
 0, KEY_CREATE_SUB_KEY + KEY_SET_VALUE, addr hKey

 .if eax == ERROR_SUCCESS

 ; Add current process ID into the registry

 invoke GetCurrentProcessId
 mov dwProcessId, eax
 invoke RegSetValueEx, hKey, $CTA0("ProcessId", szProcessId), NULL, REG_DWORD, \
 addr dwProcessId, sizeof DWORD

 .if eax == ERROR_SUCCESS

 ; Start driver

 invoke StartService, hService, 0, NULL
 inc fOK ; Set OK flag
 invoke RegDeleteValue, hKey, addr szProcessId
 .else
 invoke MessageBox, NULL, $CTA0("Can't add Process ID into registry."), \
 NULL, MB_ICONSTOP
 .endif

 invoke RegCloseKey, hKey

 .else
 invoke MessageBox, NULL, $CTA0("Can't open registry."), NULL, MB_ICONSTOP
 .endif

 ; Remove driver from SCM database

 invoke DeleteService, hService
 invoke CloseServiceHandle, hService
 .else
 invoke MessageBox, NULL, $CTA0("Can't register driver."), NULL, MB_ICONSTOP
 .endif
 invoke CloseServiceHandle, hSCManager
 .else
 invoke MessageBox, NULL, $CTA0("Can't connect to Service Control Manager."), \
 NULL, MB_ICONSTOP
 .endif

 ; If OK display current date and time to the user

 .if fOK

 invoke DateTime
 .endif

 invoke ExitProcess, 0

start endp

;:::
;
;:::

end start

3.4.2 Using the registry for passing some info to the driver

There is nothing new here except a few points.

 invoke RegOpenKeyEx, HKEY_LOCAL_MACHINE, \
 $CTA0("SYSTEM\\CurrentControlSet\\Services\\giveio"), \
 0, KEY_CREATE_SUB_KEY + KEY_SET_VALUE, addr hKey

 .if eax == ERROR_SUCCESS
 invoke GetCurrentProcessId
 mov dwProcessId, eax
 invoke RegSetValueEx, hKey, $CTA0("ProcessId", szProcessId), NULL, REG_DWORD, \
 addr dwProcessId, sizeof DWORD

 .if eax == ERROR_SUCCESS
 invoke StartService, hService, 0, NULL

Before starting the driver we create additional ProcessId value under driver registry subkey. It contains current process
identifier, which is the identifier of SCP itself. Please notice how I use $CTA0 macro here. I did specify a label szProcessId,
which the text "ProcessId" will be marked with. This lets us to reference this text later on. My text macros are flexible enough,
by the way.

If the new registry value was added successfully, we can start the driver. What this additional registry value is for you'll find
out a bit later.

 inc fOK
 invoke RegDeleteValue, hKey, addr szProcessId
 .else
 invoke MessageBox, NULL, $CTA0("Can't add Process ID into registry."), \
 NULL, MB_ICONSTOP
 .endif

 invoke RegCloseKey, hKey

Having returned from the StartService we consider that the driver has done its work and set fOK flag. The call to the
RegDeleteValue is not necessary here, because all driver registry subkeys will be removed by the subsequent call to the
DeleteService. But it's a good programming practice to clean up explicitly.

 .if fOK
 invoke DateTime
 .endif

Having removed the driver entry from the SCM database we close all opened handles and, if fOK flag is set, call DateTime
function.

3.4.3 Accessing the CMOS

In a computer motherboard there is a microchip that is used to store some system configuration information, such as disk drive
parameters, memory configuration, and the date-time. This microchip is often referred to as "the CMOS" (CMOS is an acronym
stands for Complementary Metal Oxide Semiconductor). The microchip is battery-powered and has the real-time clock (RTC).
We can obtain its data accessing 70h and 71h I/O ports. See "Ralf Brown's Interrupt List" for details (http://www-2.cs.cmu.
edu/afs/cs/user/ralf/pub/WWW/files.html).

 mov al, 0Bh ; status register B
 out 70h, al

http://www-2.cs.cmu.edu/afs/cs/user/ralf/pub/WWW/files.html
http://www-2.cs.cmu.edu/afs/cs/user/ralf/pub/WWW/files.html

 in al, 71h

 push eax ; save old data format
 and al, 11111011y ; Bit 2: Data Mode - 0: BCD, 1: Binary
 or al, 010y ; Bit 1: 24/12 hour selection - 1 enables 24 hour mode
 out 71h, al

Firstly we set a convenient data format using the status register B.

Using CMOS macro we can obtain all the information we need from CMOS and format it at the same time.

 invoke wsprintf, addr acOut, $CTA0("Date:\t%s\nTime:\t%s"), addr acDate, addr acTime
 invoke MessageBox, NULL, addr acOut, $CTA0("Current Date and Time"), MB_OK

Then we expose all retrieved data. And you should see something like this:

Figure 3-2. The output of the DateTime.exe

Most strange thing here is that we have accessed the SMOS memory without the system stops us. As I have already mentioned
above, the access to I/O ports is protected under Windows NT. Executing IN or OUT instruction in user-mode will cause process
termination. But we have touched them. How it can be? Well, it becomes possible due to the giveio driver.

3.5 Giveio device driver

3.5.1 Giveio driver source code

;@echo off
;goto make

;:::
;
; giveio - Kernel Mode Driver
;
; Demonstrate direct port I/O access from a user mode
;
;:::

.386

.model flat, stdcall
option casemap:none

;:::
; I N C L U D E F I L E S
;:::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\ntoskrnl.inc

includelib \masm32\lib\w2k\ntoskrnl.lib

include \masm32\Macros\Strings.mac

;:::
; E Q U A T E S
;:::

IOPM_SIZE equ 2000h ; sizeof I/O permission map

;:::
; C O D E
;:::

.code

;:::

; DriverEntry
;:::

DriverEntry proc pDriverObject:PDRIVER_OBJECT, pusRegistryPath:PUNICODE_STRING

local status:NTSTATUS
local oa:OBJECT_ATTRIBUTES
local hKey:HANDLE
local kvpi:KEY_VALUE_PARTIAL_INFORMATION
local pIopm:PVOID
local pProcess:LPVOID

 invoke DbgPrint, $CTA0("giveio: Entering DriverEntry")

 mov status, STATUS_DEVICE_CONFIGURATION_ERROR

 lea ecx, oa
 InitializeObjectAttributes ecx, pusRegistryPath, 0, NULL, NULL

 invoke ZwOpenKey, addr hKey, KEY_READ, ecx
 .if eax == STATUS_SUCCESS

 push eax
 invoke ZwQueryValueKey, hKey, $CCOUNTED_UNICODE_STRING("ProcessId", 4), \
 KeyValuePartialInformation, addr kvpi, sizeof kvpi, esp
 pop ecx

 .if (eax != STATUS_OBJECT_NAME_NOT_FOUND) && (ecx != 0)

 invoke DbgPrint, $CTA0("giveio: Process ID: %X"), \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION PTR [kvpi]).Data

 ; Allocate a buffer for the I/O permission map

 invoke MmAllocateNonCachedMemory, IOPM_SIZE
 .if eax != NULL
 mov pIopm, eax

 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION PTR [ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS

 invoke DbgPrint, $CTA0("giveio: PTR KPROCESS: %08X"), pProcess

 invoke Ke386QueryIoAccessMap, 0, pIopm
 .if al != 0

 ; I/O access for 70h port

 mov ecx, pIopm
 add ecx, 70h / 8
 mov eax, [ecx]
 btr eax, 70h MOD 8
 mov [ecx], eax

 ; I/O access for 71h port

 mov ecx, pIopm
 add ecx, 71h / 8
 mov eax, [ecx]
 btr eax, 71h MOD 8
 mov [ecx], eax

 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0
 invoke Ke386IoSetAccessProcess, pProcess, 1
 .if al != 0
 invoke DbgPrint, $CTA0("giveio: I/O permission is successfully given")
 .else
 invoke DbgPrint, $CTA0("giveio: I/O permission is failed")
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 invoke ObDereferenceObject, pProcess
 .else
 mov status, STATUS_OBJECT_TYPE_MISMATCH
 .endif
 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
 .else

 invoke DbgPrint, $CTA0("giveio: Call to MmAllocateNonCachedMemory failed")
 mov status, STATUS_INSUFFICIENT_RESOURCES
 .endif
 .endif
 invoke ZwClose, hKey
 .endif

 invoke DbgPrint, $CTA0("giveio: Leaving DriverEntry")

 mov eax, status
 ret

DriverEntry endp

;:::
;
;:::

end DriverEntry

;:::
;
;:::

:make

set drv=giveio

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32 /out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

The driver's code is based on well-known example (giveio) by Dale Roberts. I have decided it will be appropriate to mention
here.

3.5.2 I/O permission bit map

Our driver changes the I/O permission bit map (IOPM) that allows the process free access to the I/O ports. Refer to this doc for
details http://www.intel.com/design/intarch/techinfo/pentium/PDF/inout.pdf .

Each process has its own I/O permission bit map, thus access to the individual I/O ports can be granted to the individual
process. Each bit in the I/O permission bit map corresponds to the byte I/O port. If this bit is set, the access to the
corresponding port is forbidden, if it is clear the process may access this I/O port. Since the I/O address space consists of 64K
individually addressable 8-bit I/O ports, the maximum IOPM size is 2000h bytes.

The purpose of the TSS is to save the state of the processor during task or context switches. For performance reasons,
Windows NT does not use this architectural feature and maintains one base TSS that all processes share. This means
that IOPM is also shared. So any changes to it are not private for particular process but are system-wide.

There are some undocumented functions in the ntoskrnl.exe to manipulate with the IOPM: Ke386QueryIoAccessMap and
Ke386SetIoAccessMap.

Ke386QueryIoAccessMap proto stdcall dwFlag:DWORD, pIopm:PVOID

Ke386QueryIoAccessMap copies current IOPM by the size of 2000h bytes from TSS to the memory buffer pointed to by pIopm
parameter.

Parameter Description

dwFlag 0 - Fill memory buffer with 0FFh values (all bits are set - access denied);

1 - Copy current IOPM from TSS to the memory buffer.

pIopm Points to the memory buffer to receive current IOPM. The buffer size must be not less than 2000h bytes.

If the function succeeds it returns nonzero value in al (not eax) register. If the function fails, the al (not eax) register is clear.

Ke386SetIoAccessMap proto stdcall dwFlag:DWORD, pIopm:PVOID

http://www.intel.com/design/intarch/techinfo/pentium/PDF/inout.pdf

Ke386SetIoAccessMap copies specified IOPM by the size of 2000h from the memory buffer pointed to by pIopm parameter to
TSS.

Parameter Description

dwFlag It can be only 1 - permits copying. Any other value causes the function to return an error.

pIopm Points to the memory buffer containing IOPM. The buffer size must not be less than 2000h bytes.

If the function succeeds it returns nonzero value in al (not eax) register. If the function fails, the al (not eax) register is clear.

After the IOPM has been copied to the TSS, the IOPM offset pointer must be adjusted to point to new IOPM. This is done by
using Ke386IoSetAccessProcess - one more very useful and also completely undocumented function from the ntoskrnl.exe.

Ke386IoSetAccessProcess proto stdcall pProcess:PTR KPROCESS, dwFlag:DWORD

Ke386IoSetAccessProcess permits/forbids using IOPM for the process.

Parameter Description

pProcess Points to the KPROCESS structure (I'll tell you later about it).

dwFlag 0 - Denies access to the I/O ports, setting offset to the IOPM abroad of TSS segment;

1 - Allows access to the I/O ports, setting offset to the IOPM in limits TSS segment (88h).

If the function succeeds it returns nonzero value in al (not eax) register. If the function fails, the al (not eax) register is clear.

By the way, almost all functions from ntoskrnl are prefixed. By this prefix you can determine to which system major executive
component the function belongs to.

To denote internal functions used a variation of the prefix - either the first letter of the prefix followed by an i (for internal) or
the full prefix followed by a p (for private) or f (fastcall). For example, Ke represents kernel functions, Psp refers to internal
process support functions, Mm represents the Memory Manager functions and so on.

The first parameter to Ke386IoSetAccessProcess function is a pointer to the process object, which is KPROCESS structure
(defined in \include\w2k\w2kundoc.inc. I have specially prefixed file name with "w2k", since undocumented structures differ
across Windows NT versions. So, to use this include file in the driver intended for XP is not the good idea).
Ke386IoSetAccessProcess sets the IopmOffset member of KPROCESS structure to the appropriate value.

3.5.3 Reading info from the registry

Since we have to call Ke386IoSetAccessProcess, we need the pointer to the process object. It can be obtained by many
different ways. I have chosen the most simple - using the process identifier. For this reason in the DateTime.exe we get the
current process identifier and we put it into the registry. In this case we use the registry for passing parameter between the
user-mode code and the kernel-mode device driver. Since the DriverEntry routine runs in the System process context, there is
no way to find out, what exactly process actually has started the driver.

The second parameter - pusRegistryPath - to the DriverEntry routine is a pointer to the driver registry subkey. And we use it to
get process identifier from the registry.

Now let's see how all that works.

 lea ecx, oa
 InitializeObjectAttributes ecx, pusRegistryPath, 0, NULL, NULL

We have to initialize OBJECT_ATTRIBUTES structure (\include\w2k\ntdef.inc) before we can call ZwOpenKey. I've used
InitializeObjectAttributes macro for this, but you'd better do it manually since InitializeObjectAttributes macro is not always
behaves as expected. And you can do it like this:

lea ecx, oa
xor eax, eax
assume ecx:ptr OBJECT_ATTRIBUTES
mov [ecx].dwLength, sizeof OBJECT_ATTRIBUTES
mov [ecx].RootDirectory, eax ; NULL
push pusRegistryPath
pop [ecx].ObjectName
mov [ecx].Attributes, eax ; 0
mov [ecx].SecurityDescriptor, eax ; NULL
mov [ecx].SecurityQualityOfService, eax ; NULL
assume ecx:nothing

ZwOpenKey returns registry key handle in hKey. Second parameter specifies the access rights required to the key. And you
should remember that ecx register contains the pointer to the initialized object attributes of the key being opened.

 invoke ZwOpenKey, addr hKey, KEY_READ, ecx
 .if eax == STATUS_SUCCESS

 push eax
 invoke ZwQueryValueKey, hKey, $CCOUNTED_UNICODE_STRING("ProcessId", 4), \
 KeyValuePartialInformation, addr kvpi, sizeof kvpi, esp
 pop ecx

ZwQueryValueKey returns the entry value for an open registry key. And we use it to get process identifier from the registry.
Second parameter points to the name of the value entry for which the data is requested. I've used
$CCOUNTED_UNICODE_STRING macro to define UNICODE_STRING structure (4 bites aligned) and the unicode-string itself. If
you don't like macros, you can use the common way:

 usz dw 'U', 'n', 'i', 'c', 'o', 'd', 'e', ' ', 's', 't', 'r', 'i', 'n', 'g', 0
 us UNICODE_STRING {sizeof usz - 2, sizeof usz, offset usz}

But I never liked this way, so I wrote the following macros: COUNTED_UNICODE_STRING, $COUNTED_UNICODE_STRING,
CCOUNTED_UNICODE_STRING, $CCOUNTED_UNICODE_STRING (\Macros\Strings.mac).

Third parameter specifies the type of information requested. KeyValuePartialInformation is a symbolic constant (defined in
\include\w2k\ntddk.inc). The fourth and fifth parameters are the pointer to KEY_VALUE_PARTIAL_INFORMATION structure and
its size respectively. In the Data member of this structure we'll get our process identifier. The last parameter is the pointer to
the number of bytes returned. We should also reserve the place for it on the stack before calling ZwQueryValueKey.

3.5.4 Give user-mode process access to the I/O ports

 .if (eax != STATUS_OBJECT_NAME_NOT_FOUND) && (ecx != 0)
 invoke MmAllocateNonCachedMemory, IOPM_SIZE
 .if eax != NULL
 mov pIopm, eax

If ZwQueryValueKey successfully returns, we allocate a virtual address range of noncached and cpu cache-aligned memory for
IOPM by calling the MmAllocateNonCachedMemory.

 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION PTR [ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS
 invoke Ke386QueryIoAccessMap, 0, pIopm

By passing the process identifier to the PsLookupProcessByProcessId we get in pProcess the pointer to our process object.
Ke386QueryIoAccessMap copies IOPM in the memory buffer.

 .if al != 0

 mov ecx, pIopm
 add ecx, 70h / 8
 mov eax, [ecx]
 btr eax, 70h MOD 8
 mov [ecx], eax

 mov ecx, pIopm
 add ecx, 71h / 8
 mov eax, [ecx]
 btr eax, 71h MOD 8
 mov [ecx], eax

 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0
 invoke Ke386IoSetAccessProcess, pProcess, 1
 .if al != 0
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else

 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif

Now we'll clear the bits corresponding to 70h and 71h I/O ports, write modified IOPM back and call Ke386IoSetAccessProcess
to allow I/O access.

 invoke ObDereferenceObject, pProcess
 .else
 mov status, STATUS_OBJECT_TYPE_MISMATCH
 .endif

The previous call to PsLookupProcessByProcessId had incremented a reference count for the process object. The Object
Manager increments a reference count for an object each time it gives out a pointer to it; when kernel-mode components have
finished using the pointer, they call the Object Manager to decrement the object's reference count. The system also increments
the reference count when it increments the handle count (gives someone a handle to the object), and likewise decrements the
reference count when the handle count decrements (someone closes some handle), because a handle is also a reference to the
object that must be tracked. So even after an object's open handle counter reaches 0, the object's reference count might
remain positive, indicating that the operating system is still using the object. Sooner or later the reference count also drops to
0. When this happens the Object Manager deletes the object from the memory.

We decrement the process object's reference count by calling ObDereferenceObject. And it returns to its previous state.

 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
 .else
 invoke DbgPrint, $CTA0("giveio: Call to MmAllocateNonCachedMemory failed")
 mov status, STATUS_INSUFFICIENT_RESOURCES
 .endif
 .endif
 invoke ZwClose, hKey
 .endif

Calling MmFreeNonCachedMemory we release memory buffer, and close registry handle by calling ZwClose.

The work is done - the driver is not needed any more. Since it returns an error code, the system removes it from the memory.
But now, the user-mode process has direct access to two I/O ports.

In this example we have accessed the CMOS memory just for instance. We could beep with the system speaker, as in the
previous driver beeper.sys. I leave it to you. But remember you must not use the privileged instructions like cli and sti. And
you must not call functions from the hal.dll also, since they are in the kernel-mode address space. The only thing you can do is
to give yourselves an access to all 65535 I/O ports using this code-snippet:

invoke MmAllocateNonCachedMemory, IOPM_SIZE
.if eax != NULL
 mov pIopm, eax
 invoke RtlZeroMemory, pIopm, IOPM_SIZE
 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION PTR [ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS
 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0
 invoke Ke386IoSetAccessProcess, pProcess, 1
 .endif
 invoke ObDereferenceObject, pProcess
 .endif
 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
.else
 mov status, STATUS_INSUFFICIENT_RESOURCES
.endif

Always keep in mind that playing the system speaker and reading the CMOS memory is harmless enough. But accessing some
other I/O ports can be potentially dangerous, basically since you can't synchronize it in the user-mode.

3.6 A couple words about driver debugging

Now we can talk about the driver debugging in more details. As I've already mentioned, you should better use SoftICE as a
debugger.

To force a breakpoint in the driver's code we have to execute a CPU breakpoint instruction. You achieve it by placing an "int 3"
somewhere in your driver's code. The "int 3" raises an exception that is handled by the kernel debugger like SoftICE. But
before you use it make sure you have enabled INT 3 handling. Use the I3HERE command to specify that any interrupt 3
instruction pops up SoftICE. Check SoftICE Command Reference for details. And always bear in mind that not handled
breakpoint exception in kernel will cause a bug check resulting in the BSOD! So, don't forget to type "i3here on" before starting
the driver. In latter SoftICE versions the int 3 handling is set by default for the kernel-mode addresses.

I repeatedly called the DbgPrint function in the giveio driver's code. This function causes a string to be printed onto the
debugger command window. SoftICE is perfectly understands it. You can also use DebugView by Mark Russinovich (www.
sysinternals.com) to monitor debug output.

Copyright © 2002-2004 Four-F, four-f@mail.ru

http://www.freewebs.com/four-f/KmdTut/www.sysinternals.com
http://www.freewebs.com/four-f/KmdTut/www.sysinternals.com
mailto:four-f@mail.ru

	freewebs.com
	The Simplest Device Drivers

